If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-126x+42=0
a = 2; b = -126; c = +42;
Δ = b2-4ac
Δ = -1262-4·2·42
Δ = 15540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15540}=\sqrt{4*3885}=\sqrt{4}*\sqrt{3885}=2\sqrt{3885}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-2\sqrt{3885}}{2*2}=\frac{126-2\sqrt{3885}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+2\sqrt{3885}}{2*2}=\frac{126+2\sqrt{3885}}{4} $
| 5^2x+3=25^-3 | | 2x^2+126x+42=0 | | 2x^2+252x+42=0 | | 3X^-6x=5 | | 2/3x−1/4=1/3x+1 | | 5x(2x-3)=16 | | 2x^2+9x+42=0 | | 2x^2+4x+42=0 | | 2x^2+3x+42=0 | | 2x^2+2x+42=0 | | 2x^2+6x+42=0 | | 2x-20+8=x | | 30=40x | | 15/4x=1755 | | 22+11x=0 | | x²-1=11 | | X+33+4x-58=180 | | 4x-58=x+33 | | X+33=4x-58 | | (2x-3=3(3x+4) | | (2x-3=3(3x+4) | | 6p-7=4p-5 | | 4(x+3)=9(2x+7) | | v4− 11=–7 | | 6(x-1)+x=-x+14 | | (2w-3)(2w-5)=55 | | 4c²×400½+9³-2²=65 | | 15(5x−5)+3x=−9(13x+4 | | t*4-4=15 | | Y=6000-200x | | 98t-4.9t^2=0 | | 2773/15(x)=0 |